
Specification of the disruption-tolerant protocol stack for
the Web of Things

Deliverable 2.4 (version 1)

Université de Bretagne Sud - IRISA

December 23rd, 2015

Project ASAWoO

Adaptive Supervision of Avatar / Object Links for the Web of Objects

Grant Agreement: ANR-13-INFR-0012-04

Deliverable 2.4

Abstract
This document presents the specification of a disruption tolerant network protocol stack dedicated to the
Web of Things (WoT). This protocol stack allows to discover REST services provided by physical objects,
and to invoke these services either using CoAP or HTTP protocols. CoAP and HTTP messages are routed
towards their destination using the ”store, carry and forward” principle.

Contents

1 Introduction 2

2 Scenarios 3

3 Disruption-tolerant Computing based on a RESTful approach 6

4 Core specification 10

5 Extension specification 14

6 Service management 15

7 Bindings with disruption-tolerant communication platforms 18

1

Deliverable 2.4

1 Introduction

The “Web of Things” (WoT) extends the Internet of Things so that physical objects can be accessed and
controlled using Web standards. In project ASAWoO, the concept of avatar provides a logical representation
of physical objects in the Web. Avatars expose the functionalities of objects as REST Web services. An
avatar is composed of the ASAWoO middleware platform and of a set of REST Web services that allow to
interact with the physical object it represents. These Web services can be invoked by end-users through a
Web application (WoTApp), and by other avatars.
Actually, two main needs for communication are present in ASAWoO

• Application components (ASWAoO Functionalities and WoTApps) are in general deployed on dis-
tinct devices. A WoTApp should be able to discover and invoke services provided remotely by Func-
tionalities (these Functionalites are then marked as exposable). As Functionalities may be composite,
Functionalities may discover and invoke other Functionalities remotely.

• The ASAWoO middleware platform may be itself distributed across several devices. Some of the
middleware modules must then be able to access other remote modules.

The choice is made in ASAWoO to expose both Functionalities and middleware modules as RESTful ser-
vices. Therefore a unique middleware support will be designed that allows the discovery and the invocation
of remote RESTful services. These RESTful Web services should be accessible via the traditional HTTP
(over TCP/IP) protocol but also via CoAP (over UDP/IP).
The connected physical objects considered in project ASAWoO can be mobile. They can communicate
using their wireless interfaces, typically using their Bluetooth or their Wi-Fi interfaces. Due to their mobility
and the short radio range of these interfaces, some disconnections can occur while devices are moving. To
cope with these issues, we propose to implement in project ASAWoO a disruption-tolerant communication
module that allows disruption prone objects to communicate together using Web standard protocols and
technologies. This communication module will indeed offer a HTTP or COAP interface but will be able to
rely on a DTN communication software to make the requests and responses of these protocols tolerant to
disruptions.
Note that ASAWoO applications may not be deployed in a DTN environment but target a traditional con-
nected environment (Internet). In this case, the ASAWoO communication module should be able to avoid
relying on a DTN platform and rather use a more efficient ”legacy” HTTP or CoAP implementation. More-
over, it should be considered that some ASAWoO applications are aware that they are deployed in a DTN
environment, and can explicitely indicate it in the requests and responses they generate, whereas some other
applications may have been designed independently of the type of networks they will be deployed in.
Figure 1 illustrates the traversals of the protocol stacks implemented in the ASAWoO communication mod-
ules. An external WoTApp (running for example in a CoAP-enabled browser) invokes an ASAWoO func-
tionality exposed as a RESTful Web service by robot C. The delay-tolerant network is formed by the three
robots A, B and C. The CoAP request first reaches robot A in Wi-Fi (assuming that this one was close to the
laptop that hosts the WoTApp when the request was issued). The request traverses the DTN, through robot
B, eventually reaching robot C, thanks to the successive encounters (with Zigbee transmissions) between
robots A and B and then between robots B and C.
The remainder of this document is organized as follows. Section 2 presents a scenario involving physical
mobile objects that collaborate to perform a task and that exchange data all along this task. Based on this

2

Deliverable 2.4

Figure 1: Example of traversals of the ASAWoO DTN stacks involved in the call from a WotApp to a
Functionality

scenario, Section 3 justifies the use of distribution-tolerant or opportunistic computing techniques in the
Web of things, especially for mobile objects equipped with short radio range wireless interfaces. This sec-
tion also explains why a RESTful approach is preferable for a Web of things relying on distribution-tolerant
or opportunistic computing techniques. Section 4 presents the core specification of the REST disruption-
tolerant protocol stack we propose. It defines the spatial and temporal non-functional properties that can be
exhibited by service providers and required by clients for the service provision process. These properties
are inherent in the distribution-tolerant or opportunistic computing. Section 5 presents an extension of the
core specification dedicated to geographic-aware services. Section 6 explains how service discovery can
be achieved and how spatial and temporal non-functional properties are taken into account. Section 7 con-
cludes this document by showing how service invocation and service discovery can be implemented using
disruption-tolerant and/or opportunistic communication middleware platforms.

2 Scenarios

Communication modes (disruption-tolerant communication mode vs Internet-legacy communication mode)
and usable protocols mainly depend on connectivity assumptions. These communication modes can vary
according to the mobility of the devices, to the radio range of the wireless technology used to communicate,
to the existence of an infrastructure, etc. So we have considered three test-beds, from the simple one to the
most challenging one:

1. In the first scenario, the devices are motionless, or move in a limited geographic zone, and are al-
ways accessible through a network infrastructure. The resulting network is therefore considered as
stable and fully-connected. This scenario is exemplified by an energy saving scenario as described in
deliverable 2.2(https://liris.cnrs.fr/asawoo/doku.php?id=deliverable-2-2).

2. In the second scenario, most of devices are motionless, but unlike in the first scenario devices are
distributed in a large geographic area. The resulting network is thus partitioned in several communi-
cation islands due to the limited radio range of wireless interfaces of devices. In some circumstances,

3

https://liris.cnrs.fr/asawoo/doku.php?id=deliverable-2-2

Deliverable 2.4

certain devices can be isolated. In order to provide communications between distinct communication
islands, some mobile devices are used as data mules in our scenario. This scenario fits our vision of
the Internet of Things in a smart city context.

3. The third scenario is a more challenging one. In this scenario, most of devices are mobile and au-
tonomous. They move inside an area that is partially covered by a network infrastructure. In this
scenario, communications between devices are not programmed and not predictable. Data exchanges
are made opportunistically when devices are in the communication range of one another.

In the remainder of this section, we introduce scenarios 2 and 3.

2.1 Smart city

The smart city scenario can be seen as a geographic extension of home energy saving scenario. The goal
is to monitor, manage and optimize all the urban infrastructure through a multitude of sensors (traffic de-
tectors, instruments for measuring the air pollution, the noise level, the temperature, the brightness, the
water quality...) and several actuators (coupled with gates, valves, shutters, signboards...). The resources
are monitored, their data are collected and forwarded to some central structure, e.g. the city hall. These data
then need to be aggregated and analyzed to choose which action should be performed in return. Such smart
city already exists through large scale experiments , for example in the city of Santander. In the ASAWoO
context, sensors and actuators are extended into the Web by avatars. We do not assume that the network of
sensors and actuators is reliable and fully meshed ; many physical and financial impediments arise when
we try to connect all sensors and actuators to a stable network infrastructure. In practice, short-range ra-
dio technologies (Wi-Fi, Bluetooth, NFC) are best suited to meet the energy, size and cost constraints of
smart devices, as well as the network scaling. So a full mesh ensuring the flow of information between the
network of sensors, the actuators and the central servers over an entire city at all times is unrealistic due
to network partitioning. Data and commands exchanges between the avatar and its corresponding device
may have to be entrusted to mobile carriers, as bus, taxis, municipality agents... The figure 2 resumes our
vision of the architecture of a smart city. It describes how smart devices may respond to a query initiated
by an end-user in the city hall. A bus passing nearby sensor gateways, or smart sensors, collects their data
and carries them through the town. When a taxi intersects the bus, it stores and carries the data, forwarding
them until they finally reach the city hall.

2.2 Precision viticulture

In the previous scenario, the communication paths and the communication delays to transfer data from sen-
sors to gathering points, or from operators to actuators, are predictable since the mobile devices used as data
mules follow regular mobility patterns. The scenario we consider in this sub-section encompasses the pre-
vious scenario, and adds opportunistic communication capabilities between some autonomous agricultural
robots (or agribots).
The agricultural robotic is still in its beginning. It aims to provide to the agricultural industry the same
productivity gains that robots give in manufacturing industries (e.g., automobile manufacturing). Agribots
are part of the technology applied in agriculture that would maximize crop yields while preserving natural
resources, financial and energy. Indeed the current trend is to shift from using big machines to smaller,
lighter and more energy efficient unmanned machines that work as a team. These changing agricultural

4

Deliverable 2.4

Light sensor

Autonomous sensor

Gateway

Figure 2: Smart city in a Delay Tolerant Network environment.

practices, known as precision farming term, have the same objectives of sustainable developments that smart
cities. Several precision agricultural experiments involving agribots and sensors are already underway,
around the world, particularly in the viticulture field (e.g. European projects FP7 VINBOT and Vinebot).
The scenario we propose takes place in a vineyard of several dozen hectares, far from any electrical infras-
tructure (see Figure 3). We also assume that mobile network technologies such 3G/4G, or satellite solutions,
are too expensive and not suited to be used by all devices in large areas during long periods of times; only a
few number of devices are connected to the Internet in 3G/4G, or occasionally connected to a local network
using Wi-Fi.
The actors involved in the scenario are the manager, manual workers, agricultural machinery (tractors,
etc.), agribots and sensors. The manager may interact with sensors and agribots thanks to a Web application
running in a cloud infrastructure. He can access this application from his PC when he is in his office,
or using his smartphone when he is in the vineyards. In this last situation, he may access to this Web
application thanks to a 3G/4G connection, or to a Wi-Fi connection with a local network. He can also
interact directly with these agricultural devices thanks to a specific Web application when he is close to
them. Sensors monitor the essential agronomic parameters (soil composition, temperature, moisture, plant
health,...) and transmit their data to the cloud infrastructure thanks to data mules that pass nearby (i.e.,
agribots, tractors equipped with a DTN communication device). These data are dated and georeferenced
by the data mules. Data are delivered in the cloud infrastructure when a robot or an agricultural machine
become connected to the Internet or to the local network.
Agribots work individually and independently, once informed of a new task to be done. For example, some
agribots are in charge of weeding spaces nearby vineyards feet. At the same time other agribots have to
visually estimate infected leaf area. Each agribot moves in a row, at its own speed. When an agribot has
finished a row, he passes in front of a detector (e.g. a RFID tag) that allows him to inform another robot who
would be tempted to redo the same row. Two agribots that pass within radio range of each other (crossing
or adjacent row) can exchange information or instructions directly. When an agribot has finished its task, he
goes back to its recharging base, and may collect and carry data in order to deliver these data to the cloud

5

Deliverable 2.4

DTN
mules

sensordetector

agribot

recharging base

farmer's office

Figure 3: Precision viticulture in a Delay Tolerant Network environment

infrastructure. To avoid the interference between manual workers and robots, a site manager may prohibit
the passage in some rows by programming the detectors placed at end of the rows.
This scenario of precision viticulture highlights the interaction needs between the human actors, the various
sensors and detector scattered throughout the vineyard and the fleet of agribots. In such context, we argue
that it is important to provide the human operators with a lazy supervision of the fleet of robots, so that they
can achieve other tasks freely. The operators do not need to know the exact position of the robots or sensors
at any time.

3 Disruption-tolerant Computing based on a RESTful approach

Even in disruption-prone environments, remote avatar functionalities as well as remote ASAWoO middle-
ware distributed modules that are published as services should remain reachable. An Avatar publishes its
functionalities through RESTful services, and some ASAWoO platform core modules can also be published
remotely as RESTful services over HTTP. The avatar concept indeed revolves around the notion of re-
source where devices are represented as resourceful objects that exhibit their capabilities as functionalities.
Therefore, communication between avatars is resource-oriented and that should not be altered by the DTN
communication module.
As a consequence, the disruption-tolerant communication module should be accessed through web standard
protocols like HTTP or CoAP. HTTP and CoAP can handle RESTful communications, which are required
for homogeneity purposes with ASAWoO services.

3.1 Disruption-tolerant Computing

In order to deal with the frequent and unpredictable connectivity disruptions occurring between mobile
objects equipped with short radio range interfaces in a WoT environment such that depicts in the previous
section, project ASAWoO investigates the use of disruption-tolerant and opportunistic computing tech-

6

Deliverable 2.4

niques in WoT environments. Disruption-tolerant and opportunistic computing [3, 2] are close computing
paradigms, and therefore rely on the same communication principle, namely the ”store, carry and forward”
principle. Many delay/disruption-tolerant and opportunistic protocols have been proposed over the 10 last
years [18, 14], but only few of them specifically address issues posed by the service provision in the absence
of end-to-end connectivity in a network composed of mobile devices [17, 12, 16, 11].
The basic idea of the ”store, carry and forward” principle is to take advantage of radio contacts between
devices to exchange messages, while exploiting the mobility of these devices to carry messages between
different parts of the network. Two devices can thus communicate even if there never exists any tempo-
raneous end-to-end path between them. Recent experiments conducted in real conditions have shown that
applications such as voice-messaging, e-mail, or data sharing can indeed perform quite satisfactorily in
networks that rely on the ”store, carry and forward” principle [15, 7, 10, 20].
Based on this principle, messages are, without specific limitations, disseminated in the whole network.
Moreover, this principle induce additional delay in the message delivery process. This delay is directly
related to the mobility of devices, to the contact opportunities and to the network density. Indeed, messages
will be forwarded faster in a highly dense network composed of devices that move slowly, than in a sparse
network formed by highly mobile devices.

3.2 RESTful Web Services

REST is an architectural style introduced by Roy Fielding in his PhD dissertation in 2000 [8] for dis-
tributed hypermedia systems. This architectural style imposed 5 main constraints and an optional one on
these systems, notably for performance, scalability and simplicity purposes. This architecture style relies
on client/server model (constraint 1). Clients and servers are decoupled and can interact through a uniform
interface (constraint 2). Clients and servers can thus evolve independently, or can be replaced, as long as
the interface between them is not altered. Clients and servers communicate through a stateless protocol
(constraint 3). A session state can however be maintained on the client side. Clients must provide all the
information necessary to serve a request. The session state can eventually be transferred by the server
to another service, for instance to maintain a persistent state for a period (e.g., a database) and allow au-
thentication. Responses can be cached by clients and intermediate hosts (constraints 4). Responses must
therefore, implicitly or explicitly, define themselves as cacheable, or not, to prevent clients from reusing
stale or inappropriate data contained in responses to next requests. Such a caching process improves the
scalability and the performance of the systems since it partially or completely eliminates some client/server
exchanges. According to the last strict constraint (constraint 5), distributed hypermedia systems must be
designed as hierarchical-layered systems to reduce the overall complexity of the systems and to improve
their scalability, as intermediate layers can be used to perform load balancing and to store data in caches.
The optional constraint pertains on the provision of pieces of code on demand by servers to clients to extend
or to customize the functionality of a client (e.g., JavaScript scripts).
Web service APIs that comply with the above architectural constraints are called RESTful APIs. HTTP-
based RESTful APIs are defined by a base URI (e.g., http://example.com/resources/), an Internet media type
for the data (e.g., JSON, XML), standard HTTP methods (e.g., GET, PUT, POST, or DELETE), hypertext
links to reference a state and hypertext links to reference-related resources.
The Constrained Application Protocol (CoAP)[19], is a specialized web transfer protocol based on re-
quest/response for use with constrained nodes and constrained networks in the Internet of Things. The

7

Deliverable 2.4

protocol is designed for machine-to-machine (M2M) applications. Like HTTP, CoAP is based on a REST
architecture: servers make resources available under a URL (e.g., coap://example.com/resources/), and
clients access these resources using methods such as GET, PUT, POST, and DELETE.

3.3 Benefits of a RESTful approach to enable disruption-tolerance in ASAWoO

The REST architectural style is well adapted to the disruption/delay-tolerant and opportunistic computing.
Indeed as shown in [16], by decoupling the client and the server parts of a distributed application (constraint
1), by specifying their interactions with a well defined interface (constraint 2), and by resorting to stateless
service (constraint 3), one can substitute a service provider by another one, and we can take advantage of the
redundancy of providers in the network to improve the overall performances of the application. Moreover,
it can be difficult for a server to maintain a session with a client, because it is not necessarily connected
directly to this one, but through intermediate hosts. Due to the mobility of these hosts, the communication
path between the server and the client can be [broken irremediably / subject to disruptions]. So, it is
preferable to maintain a state on the client side. By implementing the ”store, carry and forward” principle,
disruption/delay-tolerant and opportunistic communication platforms allow to store in the cache of clients
and of intermediate nodes the responses, but also the requests that have been sent in the network (constraint
4). By implementing a proxy-based approach such as that presented in [13], intermediate hosts can respond
on the behalf of a server if they have the response in their local cache, when this one is still valid. Such an
approach allows to improve the performance and the scalability of the system, because it naturally performs
load balancing and by storing data in cache of intermediate hosts as referred in constraint number 5.

3.4 Requirements for disruption-tolerant RESTful Web Services

In order to cope with devices mobility and service disrutpion issues described in the introduction, previous
section showed the benefits of making ASAWoO RESTful web services tolerant to disruptions. This sec-
tion lists the requirements to enable disruption-tolerant RESTful web services in ASAWoO platform. The
proposed specification should therefore fulfill the following requirements, ranging from the use of standard
protocols to the the seamless integration in ASAWoO Communication Manager module.

3.4.1 Enable REST communications through standard web protocols : HTTP and CoAP

The Web of Things as defined in ASAWoO allows to interconnect devices and make their functionalities
accessible through standard web protocols. HTTP has been widely adopted as a de-facto transport protocol
when implementing REST architectures, since HTTP protocol matches REST requirements (GET, PUT,
POST and DELETE methods are CRUD operations).
The web transfer protocol called Constrained Application Protocol (CoAP), which has been designed to
target constrained nodes in the Internet of Things, is based on REST. As such it is resource-oriented, and
like HTTP, resources can be accessed via the same methods (GET, PUT, POST and DELETE).
For these reasons as well as for homogeneity purpose with the transfer protocol ensuring communications
between avatars in ASAWoO Web of Things, the protocol stack specificied in this document should use
HTTP or CoAP as the web transport protocol.

8

Deliverable 2.4

3.4.2 Leverage disruption-tolerant computing using non-functional properties

In order to bound the propagation of messages in time and space, the opportunistic protocols traditionally
define for each message a lifetime and a maximum number of hops (i.e., the maximum number of times it
can be retransmitted). Some protocols also allow to circumscribe the propagation of messages in a given
geographical area [11, 12]. Time and space being the two major factors of service disruptions, when such
temporal and spatial boundaries exist, it may be worth expressing similar constraints at the application
level in a cross-layered approach. These constraints could thus be used by both the disruption-tolerant
middleware to manage messages propagation, and the application layer when discovering or publishing
services to narrow service provider/consumer matching.
Service providers can indeed include, for each service they offer, such non-functional properties in their
service advertisements and service responses in order to define in which area the services are available,
and until when advertisements and responses must be considered as valid. Similarly, clients can include
these non-functional properties in their service discovery requests and service invocation requests in order
to define to which area they are looking for a service, and to precise the maximum delay they expect
for a response. This delay must be less than the lifetime of advertisements and invocation requests. These
properties can then be used by the communication module underlying layers that are responsible for carrying
HTTP or CoAP queries in a disruption-tolerand way to forward the messages towards their destination.

3.4.3 RESTful disruption-tolerant service discovery and invocation

Even in disruption-prone environments, remote avatar functionalities as well as remote ASAWoO middle-
ware distributed modules that are published as services should remain reachable. An avatar publishes its
functionnalities through RESTful services, and some of ASAWoO platform core modules can also be pub-
lished as RESTful services to be used remotely by resource-constrained devices. The avatar concept indeed
revolves around the notion of resource where devices are represented as resourceful objects that offer their
capabilities as functionalities. Therefore, communication between avatars consists in resource-oriented ser-
vice invocations, and this approach should not be altered by the communication module that would make
service invocations disruption-tolerant.
Service discovery will be regarded as a separate concern. Each avatar can indeed manage its own service
registry which can be itself provided as a RESTful service. Therefore, discovery services published this
way can be invoked through the disruption-tolerant communication module like any other services.

3.4.4 Avatar identification and addressing

Physical objects can use different wireless technologies, so avatar identification should not depend on the
wireless technology. Furthermore, as different disruption/delay-tolerant and opportunistic communication
middleware platforms are likely to be used to perform service provision in a WoT environment composed
of mobile devices, it is suitable to identify mobile devices with a unique identifier that is also independent
of a specific platform.
Since several opportunistic networking techniques rely on broadcasting messages on multicast or anycast
channels, beyond supporting end-to-end addressing, the disruption-tolerant communication module should
also consider broadcast, multicast and anycast addresses. Some works have investigated anycast communi-
cation in opportunistic networks [5, 21].

9

Deliverable 2.4

Moreover, even at service level these kinds of addressing should be enabled. When spatial constraints are
defined, service advertisements and service discovery requests must be disseminated, received and treated
respectively by all service clients and service providers located in the area specified in the messages. Thus,
a multicast addressing scheme would help to implement such a forwarding process. Service invocation
traditionally relies on a point-to-point communication model and on a unicast addressing scheme, where
a client sends a request to a given provider, and where the provider returns a response back to the client.
Sometimes, for performance reasons, it could also be relevant to send a same service invocation request to
several service providers at the same time. Such an operation requires an anycast addressing scheme.
Similarly to avatar identification, anycast and multicast addressing scheme must be as generic as possible.

3.4.5 Seamless DTN support

Developers should not necessarily know beforehand whether their applications will or will not run in a
disruption-prone environment. Nonetheless, developers should still be able to produce disruption-aware
code if they are aware that the services used or provided by their applications might not be available.
Hence the follolwing two requirements:

• Developers should be able to leverage disruption-tolerant routing by defining specific service-level
constraints on service providers and consumers. These constraints can be expressed by the non-
functional properties previously mentionned in section 3.4.2.

• Communication module should be usable in a transparent way. If no DTN-related constraint is
defined, an implicit default mode should be used to handle communications when running in a
disruption-prone environment.

The decision of switching from a disruption-tolerant communication mode to default mode is left to ASAWoO
context manager. Depending on the context, ASAWoO context manager should enable or disable [use or
ignore ?] the disruption-tolerancy features of the communication module. This kind of switch mechanism
would allow to spare network resources as well as computing resources since affording superfluous DTN
support overhead would be a waste when running in a static fully-connected environment.

4 Core specification

This section presents the specification of the core of the disruption-tolerant communication module of the
ASAWoO middleware platform. It gives an overview of the architecture of the protocol stack, how avatars
are identified, the format of the URLs used to access REST Web services, and the temporal and spatial con-
straints associated with REST Web services that must be delivered by a disruption-tolerant communication
system.

4.1 Overview of the protocol stack architecture

As mentioned in Section 1, project ASAWoO aims at controlling and at interconnecting physical objects
using standard Web protocols and technologies. In project ASAWoO, REST Web services deployed on
the ASAWoO middleware platform can be accessed either using the application-level protocols HTTP and
CoAP (see Figure 4). The application-level messages (i.e., HTTP and CoAP messages) can be encapsulated

10

Deliverable 2.4

Figure 4: Architecture of the protocol stack.

in UDP datagrams, in TCP segments or in messages of a given disruption-tolerant communication system
in order to be transmitted to their destination.
It must be noticed that service discovery will be considered as a separate concern. Each avatar can indeed
manage its own service registry. In our approach, this registry is exposed as a REST Web service for
discovery purposes. This service can therefore be invoked like any other services via the application-
level protocols HTTP and CoAP, and using Internet-legacy protocols or disruption-tolerant protocols. This
service discovery process is further specified in Section 6.

4.2 Identification of avatars

In project ASAWoO, an avatar can be deployed on the physical object it represents, can be distributed both
on the physical object and on a remote host (or a cloud infrastructure), or can be installed only on a remote
host (or a cloud infrastructure). A host can thus accommodate several avatars at the same time. Avatars are
identified by a unique ID, thus allowing to distinguish the different avatars running on a same host. This ID
is a short string (of 8 characters) encoded in Base62. A user-friendly name (i.e., an alias) can be associated
with this ID. An avatar can be accessed through its ID and the address (or the name) of the host on which
it runs. The address of the host depends if the transmission of the application-level messages is achieved
using Internet-legacy protocols (i.e., TCP/IP, UDP/IP) or a disruption-tolerant communication system. In
this last case, the address depends on the communication system. For instance, in the C3PO opportunistic
communication middleware platform, hosts are identified by a string (of 6 characters) encoded in Base62. It
must be noticed that, if a host must be accessed using both Internet-legacy protocols and a given disruption-
tolerant communication system, it is advisable to assign the same alias to the IP address of the host and
to its address provided by the disruption-tolerant communication system, thus allowing to access this host
with the same alias whatever the communication mode.
The syntax that must be used to access an avatar is the following:

<avatar URL> ::= <host name>[":"<port>]"/"<avatar name>

<host name> ::= (<host alias> | <host address>)["."<domain>]

<avatar name> ::= <avatar alias> | <avatar id>

11

Deliverable 2.4

Figure 5: Host running a HTTP/CoAP reverse proxy and several avatars at the same time.

When a host accommodates several avatars simultaneously, the alias or the ID of the avatar that must be
accessed must be specified. This host must run a (HTTP/CoAP) proxy in order to forward the application
messages it receives to the right avatar (as illustrated in Figure 5). On the contrary, when a host accommo-
dates only one avatar, the alias or the ID of the avatar is optional. When an avatar is distributed on both the
physical object it represents and a remote host, the avatar can indifferently be accessed on the two devices.

4.3 URL format

REST Web services are traditionally accessed from a URL, through a point-to-point client/server commu-
nication model. In the Web of Things (WoT), it seems interesting to be not limited to this simple communi-
cation model, and to adopt new communication models, that are not necessarily relevant for traditional Web
applications, but that have a sense in the WoT, such as anycast, multicast and broadcast communication
models. Indeed in some scenarios, such as those presented in Section 2, it can be useful to send a service
request to several objects (e.g., sensors) simultaneously without naming them explicitly. Similarly in local
area networks, avatars should be able to announce their presence to other avatars, or to advertise the services
they offer, using a broadcast communication model. These communication models have the advantage of
reducing the network load, while improving the response time in comparison of a sequential unicast invoca-
tion of several services. The disruption-tolerant protocol stack implemented in the communication module
of the ASAWoO middleware platform integrates these different communication models. In order to remain
consistent with the RESTful approach, these different communication models are specified in the scheme
of the URLs used to access REST Web services. The general format of a URL is the following:

<service URL> ::= <scheme>"://"<destination>"/"<avatar name>"/"<resource>["?"<parameters>]

<scheme> ::= ("http"["s"]|"coap")["+dtn"]["+acast"]["+mcast"]["+bcast"]

<destination> ::= (<host name> | <anycast name> |

<multicast name> | <broadcast name>)[":"<port>]

<anycast name> ::= <anycast alias> | <anycast address>

<multicast name> ::= <multicast alias> | <multicast address>

<broadcast name> ::= <broadcast address> | "*"

The first part of the scheme indicates the application-level protocol used (i.e., HTTP, HTTPS, or CoAP)
to communicate with a remote service. ”+dtn” must additionally be specified in the scheme, if CoAP and
HTTP messages must be forwarded by a disruption-tolerant communication system. By default, messages

12

Deliverable 2.4

are transmitted using a unicast communication model. If another model must be employed for the trans-
mission, it must be specified in the scheme. ”+acast”, ”+mcast” and ”+bcast” specify respectively that
an anycast, a multicast and a broadcast communication model must be used in the forwarding process. It
must be noticed that the transmission of HTTP messages using a multicast communication model has been
proposed in the past as an Internet draft [9].
Depending on the communication model, the ”destination” part of the URL can designate the name or the
address of a host, of a multicast group or an anycast group. It can also be a broadcast address or the wildcard
”*”.
A domain name can be added to access a remote host using Internet-legacy protocols. A port number can
also be specified if the remote host(s) do(es) not use the default port numbers associated with protocols
HTTP, HTTPS and CoAP.
The ”avatar” part of the URL designates the name or the ID of the avatar. This part must be specified if
the remote host(s) accommodate(s) several avatars simultaneously, otherwise it is optional.
The ”resource” part identifies the resource that must be created, read, updated or deleted (CRUD opera-
tions).
Additional parameters can be also specified in order to define non-functional properties for disruption-
tolerant and opportunistic computing as presented in the next sub-section.

4.4 Non-functional properties for delay-tolerant and opportunistic computing

In delay-tolerant and opportunistic networks, service messages (i.e., service discovery requests, service
advertisements, service invocation requests, service responses) are forwarded following the ”store, carry
and forward” principle. In some circumstances, the propagation delay and dissemination area of messages
must be bounded. In the remainder of this section, we list a set of non-functional properties defining
temporal and spatial constraints that can be expressed by service clients and service providers regarding
the service delivery conditions. These non-functional properties can be exploited by disruption-tolerant or
opportunistic communication systems in the message routing process.

4.4.1 Caching parameter

Service clients can specify in their requests if the latter can be cached by intermediate nodes. If so, interme-
diate nodes will store in their cache both the request and the response associated with this request until they
expire. Thus, they can reply later to a similar request sent by any node on the behalf of the service provider
(i.e., by returning immediately the cached response, instead of forwarding the request towards the service
provider). This parameter is named dtn_cacheable. Then, intermediate nodes can remove from their local
cache a request when they receive a response to this request, thus implementing a network healing mecha-
nism. Although they can keep this request in their local cache, they must not process them in order to reply
to a service client. Such a principle has been presented in [13].

4.4.2 Time parameters

Temporal constraints can be expressed in URLs as query strings or in the payload of application-level
messages. These constraints are defined as a relative time from the message creation time. They are
identified respectively by dtn_ctime (creation time) and dtn_etime (expiration time).

13

Deliverable 2.4

dtn_ctime is expressed as a long integer that represents the difference, measured in milliseconds, between
the current time and midnight, January 1, 1970 UTC.
dtn_etime is expressed as an integer that represents the difference, measured in milliseconds, between the
creation time and the expiration time.
The expiration time, can also be specified as a symbolic social time using the parameter dtn_stime. The
values of this parameter are strings defined in an ontology (e.g., afternoon, evening, tomorrow, ...). The
values are prefixed by the ”@” symbol as shown in the following example:

Example: dtn_stime=@midnight

These constraints have a different signification depending on the type of messages. In a service invocation
request, these constraints express the fact that the client wants to get a response before the expiration time
specified in the request message. The request can be disseminated in the network, and a provider of the
service can answer to this request until it expires.
When specifying time constraints for a response, these constraints express the lifetime of the response. This
lifetime may be:

• equal to the lifetime of the request (i.e., the response must be returned to the client before the deadline
specified in the request),

• inferior to the lifetime of the request, if information contained in the response becomes invalid before
the lifetime of the request expires,

• or greater than the lifetime of the request, if information contained in the response is still valid after
the lifetime of the request expires. In this case, the response can be cached until it expires too.

In service discovery requests (e.g., GET method on a service registry), temporal constraints have the same
signification than in the service invocation requests. In service advertisements (e.g., POST method on
clients), these temporal constraints specify how long the service advertisement can be considered valid,
(i.e., how long the service should be expected to be provided). Service advertisements can indeed be cached
until they expire.
These temporal constraints will be used by the disruption-tolerant communication systems to determine
how long a message can be stored in a cache or forwarded through the network.

4.4.3 Number of hops

A number of hops can additionally be specified in application-level messages in order to circumscribe at
a coarse grain the area in which the messages can be disseminated, and to avoid that a message eternally
roams in the network.

5 Extension specification

This section presents the extension part of the specification. Extended specification is about non-functional
geographical properties and callback functions for asynchronous communications. These properties can
be specified by service clients and service providers in application-level messages, but are not necessarily
supported and taken into consideration by all disruption-tolerant communication platforms.

14

Deliverable 2.4

5.1 Location parameters

The dissemination of messages can approximatively be circumscribed to an area using a limited number of
hops. Nevertheless , this limitation is not exact, and does not guarantee that a message cannot be forwarded
outside an expected area. Indeed, a host can forward a message to another host outside this area if the
maximum number of hops of the message has not been reached. In order to limit the propagation of
messages in the physical environment, geographical properties can be defined. Geographical areas may be
defined as squares or circles relatively to a given GPS position. The GPS point is identified by dtn_src_pos.
This point is defined by 3 floating values (longitude, latitude, altitude) as shown below:

Example: dtn_src_pos=47.234,-2.123,100

The location of service providers can also be specified by clients in their service invocation requests if
they know this location. This property is identified by dtn_dst_pos. It is defined in the same manner as
dtn_src_pos. This property can be used in the message forwarding process as shown in [11].
A circle is defined by a GPS point and a radius expressed as a floating value. Metric units must be used. In
the following example, the altitude is not specified.

Example: dtn_area=47.234,-2.123�100

A square is defined by a GPS point and 2 distances expressed in meters.

Example: dtn_area=47.234,-2.123�100,100

The location property can also be defined by a symbolic name (e.g., home, office). This property is identified
by dtn_slocation:
The location property can also be defined as an address. This property is identified by dtn_address. A loca-
tion service (OpenStreetMap, GoogleMaps, ...) is required to obtain the GPS coordinates for this address.

5.2 Asynchronous communication

Service clients can add in the query string part of the URL or as a path-parameter, a parameter ”callback”
in order to define the URL that must be used by service providers to return the response. Thus, clients
can process the responses they receive asynchronously without being blocked by the reception of service
responses. As show in the following example, a callback references a URL.

Example: callback=http://my_host/my_avatar/response_processor

6 Service management

The list of services offered by a node, as well as discovered and registered services, are maintained on a
node’s local registry. The node broadcasts its local services when it starts a mission ; he also registers the
discovered broadcast services. Nevertheless, when a node joins an already started mission or encounters a
new node, it can also ask the newly encountered node its services. For this purpose the service registry is
published as a RESTful service that can be invoked like any other service.

15

Deliverable 2.4

6.1 Service discovery and registration

The service management module maintains two categories of services: local or remote.
The local services are advertised (POST service/announce/name) at the beginning of the mission. Then
they are also advertised in response of a service discovery request (GET service/request/name or GET
service/request/*). This service request may have been broadcast (in anycast or broadcast sending mode)
or may have been addressed to a node (unicast sending mode).
A remote service is added to the service registry when the node receives a service advertisement (POST
service/announce/name) .

6.2 Service description

The service description contains five elements. Two are mandatory, namely the identification and the type,
the three others (i.e., geographical and schedule availability details and the semantic description document
in case a service should be deployed after the initialization of the mission) are optional. As explained
in the previous deliverable, services are described by their functional and non-functional properties using
JSON-LD-based semantic notations.
Once a mission has started and as soon as the nodes are deployed, they do not need to discover the whole
semantic documents as they are known beforehand.

6.2.1 Identification

Services must be identified. A service cannot be invoked if it is not identified, requests must be targeted.
This identification can be likened to request destinations that are, both in HTTP, CoAP and the BP, URI.
That is why the service URI must be included in the service description.

6.2.2 Type

While several types of services can be deployed, different devices may offer the same type of services, and
thus the same interface. For example, a given sensor may end up being deployed twice or more; hence
offering the same service at multiple times and positions. Instead of including the whole description of
functional and non-functional properties, and as the different service interfaces are already known by the
nodes, the service description only needs to declare which service interface is implemented by the service
provider.
All interfaces must then uniquely match a type. This type can take the form of a hash (especially if the
interfaces are stored in a table), a number, an enumeration, or any format that can be used to uniquely
identify the interfaces.

6.2.3 Time restrictions

Devices may restrict their service availability depending on time constraints. This restriction can be useful
when a device relies on some scheduling such as working hours, sleep time for battery issue or any other
reason. Services can thus provide a schedule that nodes should respect to spare network resources as the
provider may not answer outside the described schedule.
In order to inform clients of their schedule availability, services must include in their description their
frequency of wakening and duration.

16

Deliverable 2.4

{"schedule":[

{"start": crontab_format, "duration": duration_in_seconds},

{"start": crontab_format, "end": crontab_format}

]}

6.2.4 Geographical restrictions

In addition to time restrictions, some service providers may restrict their advertisements and discovery
areas. These restrictions allow to bound the dissemination of the local services descriptions, and thus avoid
to be requested from too far. This way, opportunistic networks are then scattered offering a better managing
policy and ensuring a better bandwidth usage.
To restrict their availability area, services must include the area definition using positions as defined in 5.1.
Circles can be defined by a GPS position and a radius while rectangles can be defined by a GPS position
and 2 distances expressed in meters. A list of areas can be provided to define more complex geometric
figures.
The format to describe the area is:

{"area":[

{"shape: "rectangle",

"start": {"lat": lat, "long": long},

"stop": {"lat": lat, "long": long}},

{"shape: "rectangle",

"start": {"lat": lat, "long": long},

"size": {"width": lat, "height": long}},

{"shape: "circle",

"center": {"lat": lat, "long": long},

"radius": radius}

]}

6.2.5 Semantic description

If a whole new service is deployed dynamically in an already-running environment, clients need the seman-
tic description of this service to be able to use it. This last optional field, semantic description, should not
be useful in most cases as the nodes are supposed to know beforehand all deployed services, yet it allows
new services to be deployed.
To do so, the service description must include the document describing their functional and non-functional
properties using JSON-LD-based semantic notations.

6.2.6 Overview

As explained below and pictured in 6, the service description contains five different fields:

• Two mandatory:

17

Deliverable 2.4

Service description

Mandatory details

TypeID

Optional details

Geographical Schedule Description

Figure 6: Service description overview

– ID: identification of the service in its URI form.

– Type: the identification of the interface exposed by the service. The different interfaces are
known beforehand, so the whole interface does not need to be included entirely.

• Three optional:

– Schedule details: to constrain the usage of the service according to a specific schedule (avail-
ability of the device).

– Geographical details: to constrain the usage of the service in a specific area.

– Description: to include a new service non-functional and functional semantic document dynam-
ically deployed.

7 Bindings with disruption-tolerant communication platforms

An implementation of the specification of the ASAWoO delay-tolerant REST services provision presented
in the previous sections relies on the ability to transfer messages in a delay-tolerant network. Some plat-
forms offering disruption-tolerant (often abbreviated as DTN) communication are available. However, they
may differ in interfaces and capabilities. Binding ASAWoO with a given DTN platform may raise issues
regarding the supported protocol, addressing, deployment, or other practical issues. As ASAWoO pro-
vides HTTP or CoAP interfaces for service provision and discovery, an adapter is required to accomodate
the underlying DTN platform. This adapter includes a HTTP/CoAP proxy server in charge of catching
HTTP/CoAP requests and responses, and a DTN adapter that will include these requests and reponses in
adequate DTN messages, making use of a dedicated DTN library. Figure 7 depicts the general architecture
of a binding in the case of a HTTP proxy.
In this section we discuss three different bindings with available DTN platforms, namely Bundle Protocol,
C3PO and DoDWAN.

Session management

As the DTN ASAWoO requests and responses should include non-functional properties such as their life-
time, this information can be used to close a HTTP or CoAP session at the proxy-level in order to avoid
maintaining unecessary connections between clients and servers.

18

Deliverable 2.4

Figure 7: Architecture of a ASAWoO binding

7.1 Bundle Protocol (BP) [1]

7.1.1 Protocol

The BP is the de facto standard for the bundle-layer of the DTN architecture [6]. The BP forms a message-
based overlay that follows the store-carry-and-forward principle. The BP defines the format of the mes-
sages, called bundles, and the logic layout to process them.
As a network overlay, the BP relies on subnet-specific protocols called Convergence Layers (CL) to trans-
port bundles (e.g., TCP, UDP, LTP). Bundles have a lifetime and will be deleted if it expires. In order to
overcome network disruptions and high delays, the BP uses a cache to store bundles. These bundles are
either processed by an application (if the destination is on the node), or forwarded to other nodes toward the
bundle destination. A bundle destination (or bundle endpoint) is identified by an Endpoint IDentification
(EID) that takes the form of a URI. As there is no central authority to manage IP address space, BP relies
on a specific independent identification mechanism based on URI with the dtn scheme. These URIs are
used to identify BP endpoints. An EID can either be a singleton (i.e. dtn://sensors0a1e/temperature) or a
set of BP endpoints that register themselves with a common EID (i.e. dtn://all/sensors/temperature), thus
allowing multicast-like operations to be performed.
The BP bundles have to be routed from node to node. The BP specification does not specify a routing
method in particular. Many routing algorithms intended to be adapted to a networking context (e.g., the
mobility of the nodes) or to a type of application can be used. A key characteristic of a routing algorithm is
its choice to allow multiple copies of a bundle in the network (e.g., as in the epidemic approach).
Bundles are constituted of one primary block (header) and one or more payload blocks. The primary block
carries options that influence the treatment performed by the nodes that forward and receive the bundle. For
example, a Report-When-Bundle-Delivered option will make the destination node emit an administrative
bundle when receiving the bundle.

7.1.2 Implementation

The BP implemention chosen for the development of ASAWoO is IBR-DTN[4]. IBR-DTN runs as a dae-
mon that listens on a local TCP socket. Command line IBR-DTN tools communicate with the daemon

19

Deliverable 2.4

through the local TCP socket using the API offered by the daemon. An IBR-DTN Java interface has been
developed to ease the communication between BP Java applications and the IBR-DTN daemon.
In our case, a CoAP client sends a local request to the HTTP/CoAP proxy by embeding the URI of the
destination as a CGI parameter, see 4.3. The HTTP/CoAP Proxy, acting as a BP application, will then
create a bundle if the requested transport protocol is the BP. This bundle will be destinated to the node
matching with the URI passed as CGI parameter. This bundle, once sent, will be forwarded and carried
through a set of relay nodes running IBR-DTN. These relay nodes do not need neither the IBR-DTN Java
interface nor the Proxy to disseminate the bundle. When the bundle reaches its destination, the IBR-DTN
daemon will pass the bundle to the local BP endpoint matching the URI, that is the local HTTP/CoAP
Proxy. The proxy will then send locally the request to the CoAP server, wait for the response, encapsulate
this response in a bundle and send it back to the client. Note that the response may be forwarded through a
whole different set of BP relay nodes.
The Figure 8 presents the architecture stack of CoAP deployed with the BP as the transport protocol.

TCP

CoAP Client

C
+

+ IBR-DTN
BP daemon

TCP Convergence Layer

IP

TCP

Client node Server nodeRelay node(s)

C
+

+ IBR-DTN
BP daemon

TCP Convergence Layer

IP

TCP

TCP

CoAP Server

C
+

+ IBR-DTN
BP daemon

TCP Convergence Layer

IP

TCP

IBR-DTN BP APIJa
va

HTTP/CoAP Proxy

IBR-DTN BP APIJa
va

HTTP/CoAP Proxy

Figure 8: BP architecture stack

7.2 C3PO

The C3PO platform provides different types of messages for service discovery and service invocation.
These types are identified respectively by the values SERVICE_REQUEST, SERVICE_RESPONSE, SERVICE_DISCOVERY_REQUEST,
SERVICE_ADVERTISEMENT of the header MESSAGE_TYPE. Service discovery requests and service advertise-
ments can be disseminated in the network using a predefined topic, such as ”SERVICE_MANAGEMENT”.
All the devices connected to the network and running the ASAWoO platform (and that have subscribed to
this topic) will receive these messages. The service invocation traditionally relies on a point-to-point com-
munication model, and therefore could be implemented with the channel-based communication paradigm
proposed by the C3PO platform.
The C3PO platform defines additional message headers that can be used to take into account the disruption-
tolerant properties specified by the application services in the message forwarding process. These additional
message headers are:

• EMISSION_DATE: date of message emission,

• LIFETIME: lifetime of the message (relative time expressed from the emission date),

20

Deliverable 2.4

• NB_HOPS: the maximum number of hops the message can make,

• SOURCE_GPS_LOCATION: the GPS location of the emitter,

• DESTINATION_GPS_LOCATION: the GPS location of the destination,

• GEOGRAPHIC_AREA_RESTRICTION: the area in which the message can be disseminated,

In the remainder of this sub-section, we describe both the topic-based publish/subscribe paradigm and the
channel-based send/receive paradigm.

Topic-based publish/subscribe paradigm The topic-based publish/subscribe communication model makes
it possible to develop applications that can publish multimedia contents on specific topics, and subscribe
to given topics in order to receive related content. The model implemented relies on a purely peer-to-
peer decentralized approach. Topic names are assumed to be already known by the applications, a given
topic is generally pre-defined or handled by a single application module that performs both production
and consumption. The subscription and the publication are local to each device. Thanks to the store-
carry-and-forward principle, contents published in a topic by publishers (P in Figure 9) are disseminated
opportunistically in the communication network by mobile devices, being either devices hosting subscribers
for this topic or ordinary intermediate devices (resp. S and I in Figure 9), and are thus delivered to the topic
subscribers.

Figure 9: Communication between mobile devices using the publish/subscribe paradigm

Channel-based send/receive paradigm The point-to-point communication paradigm using the concept
of channel is intended for applications that allow users to communicate with each others by sending mes-
sages addressed to specific recipients. In the framework, a channel between two devices is identified by
the addresses of the devices and a channel ID. Messages sent through a channel are opportunistically for-
warded by intermediate devices (I in Figure 10) towards their destination according to one of the message
forwarding strategies implemented in the framework. Thus, two devices can exchange data even if they are
not within mutual radio range. The API we have developed is illustrated in Figure 10. Device D1 obtains a
reference to a new channel object by providing the address of the remote device D2 and a channel ID. Using
this channel object, D1 can send messages to D2. These messages will be stored, carried and forwarded
by intermediate devices until being delivered to D2. Device D2 waits for a channel establishment through

21

Deliverable 2.4

the accept() method. As soon as it receives a request from D1, the channel is established at either sides,
and D2 can start receiving messages from D1. Messages can be received either by calling the receive()

method or by registering a message listener to this channel.

Figure 10: Communication between mobile devices using the point-to-point send/receive paradigm

7.3 DoDWAN

DoDWAN (Document Dissemination in mobile Wireless Ad hoc Networks) is a Java-based middleware
platform developed by CASA/IRISA in order to support communication in opportunistic networks.
DoDWAN implements a selective version of the epidemic routing model proposed in [ER]. It provides ap-
plications with a publish/subscribe API. When a message is published on a device, it is simply put in the
local cache maintained on this device. Afterwards, each contact with another device is an opportunity for
the DoDWAN system to transfer a copy of the message to that device. In order to receive messages an
application must subscribe to DoDWAN and provide a selection pattern that characterizes the kind of mes-
sages it would like to receive. The selection patterns specified by all local applications running on the same
device define this device’s interest profile. DoDWAN uses this profile to determine which messages should
be exchanged whenever a contact is established between two devices. For the time being, DoDWAN imple-
mentation relies on UDP or TCP (over IPv4 or IPv6) in order to exchange messages between neigbouring
devices. No assumption is made about the underlying MAC and Physical layers.
In some practical opportunistic networks, DoDWAN can be associated with an external piece of software
that plays the role of a connectivity manager. This connectivity manager dynamically creates and destroys
so-called communication channels according to the ability of the device to exploit a communication in-
terface (through which other neighbour devices are potentially reachable). At the moment, UDP channels
(unicast or multicast) and TCP channels (unicast) can be used. In simple scenarios (for example when a
device accesses a Wi-Fi ad-hoc network), no connectivity manager is required and only one initial channel
(a multicast-enabled UDP channel in the case of a Wi-Fi ad-hoc network) is specified in the DoDWAN
configuration and created automatically.

7.3.1 DoDWAN API

With DoDWAN, devices are identified with a name uniquely defined in the network. There is no constraint
on the naming: any string of characters can be used.
DoDWAN supports the dissemination of so-called “messages”. A message contains a descriptor and a
payload. A descriptor consists in a list of attributes in the form of pairs of strings (key, value). Two
mandatory attributes must be present in a descriptor (message ID and lifetime) and the application can add

22

Deliverable 2.4

Figure 11: API DoDWAN

any other attributes. The payload of a DoDWAN message is considered as raw data (bytes). Figure 11
shows two examples of code desribing message publication, as well as subscription and message reception.

7.3.2 Point-to-point adressing with DoDWAN

In order to use the content-based dissemination mechanism provided by DoDWAN to implement the destination-
based mechanism induced by the client/server communication scheme of HTTP or CoAP, one can simply
include an attribute destination in the descriptor of the messages. This attribute will be set by the sender
to the identity of the destination host (as found in the URL). The message can then be published as usual.
The destination host will actually be the only one receiving the message as far as all the hosts subscribe to
messages containing a destination attribute with a value equal to their own identity.

7.3.3 Message format

DoDWAN is considered as a transport protocol for HTTP or CoAP. The entire content of the HTTP or
CoAP request or response will form the payload of the DoDWAN message. In addition, attributes may be
added in the DoDWAN descriptor for storing HTTP headers or CoAP options in a more convenient way
than in the payload, for logging purpose for example.

References

[1] Maël Auzias, Yves Mahéo, and Frédéric Raimbault. CoAP over BP for a Delay-Tolerant Internet of
Things. In International Conference on Future Internet of Things and Cloud (icfiotc), Proceedings of

23

Deliverable 2.4

the 3rd. IEEE, 2015.

[2] Marco Conti, Silvia Giordano, Martin May, and Andrea Passarella. From Opportunistic Networks to
Opportunistic Computing. IEEE Communications Magazine, 48(9):126–139, September 2010.

[3] Marco Conti and Mohan Kumar. Opportunities in Opportunistic Computing. Computer, 43:42–50,
2010.

[4] Michael Doering, Sven Lahde, Johannes Morgenroth, and Lars Wolf. IBR-DTN: an efficient imple-
mentation for embedded systems. In 3rd ACM workshop on Challenged networks, pages 117–120.
ACM, September 2008.

[5] Armel Esnault, Nicolas Le Sommer, and Frédéric Guidec. An Anycast Communication Model for
Data Offloading in Intermittently-Connected Hybrid Networks. In The 10th International Conference

on Future Networks and Communications (FNC 2015) / The 12th International Conference on Mobile

Systems and Pervasive Computing (MobiSPC 2015), ADDRESS = Belfort, France, PUBLISHER =

Elsevier, SERIES = Procedia Computer Science, OPTVOLUME = , NUMBER = 56, PAGES = 59–

66, YEAR = 2015, MONTH = Aug, DOI = 10.1016/j.procs.2015.07.184.

[6] Kevin Fall. A Delay-Tolerant Network Architecture for Challenged Internets. In Proc. of ACM SIG-

COMM03, August 2003.

[7] Stephen Farrell, Alex McMahon, Stefan Weber, Kerry Hartnett, Aidan Lynch, and Eoin Meehan.
Report on DTN Applications During Arctic Summer 2010 Trial. In 1st International Workshop on

Opportunistic and Delay/Disruption-Tolerant Networking, October 2011.

[8] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architectures.
PhD thesis, University of California, Irvine, 2000. AAI9980887.

[9] Yaron Y. Goland. Multicast and Unicast UDP HTTP Messages, Internet Draft, Internet Engineering
Task Force, nov 1999.

[10] Md. Tarikul Islam, Anssi Turkulainen, Teemu Kärkkäinen, Mikko Pitkänen, and Jörg Ott. Practi-
cal Voice Communications in Challenged Networks. In 1st Extreme Workshop on Communications,
August 2009.

[11] Nicolas Le Sommer, Salma Ben Sassi, Frédéric Guidec, and Yves Mahéo. A Middleware Support
for Location-Based Service Discovery and Invocation in Disconnected MANETs. Studia Informatica

Universalis, 8(3):71–97, September 2010.

[12] Nicolas Le Sommer and Yves Mahéo. Location-Aware Routing for Service-Oriented Opportunistic
Computing. International Journal on Advances in Networks and Services, (3):225–235, 2012.

[13] Nicolas Le Sommer, Romeo Said, and Yves Mahéo. A Proxy-based Model for Service Provision in
Opportunistic Networks. In 6th International Workshop on Middleware for Pervasive and Ad-Hoc

Computing - Middleware Conference, pages 7–12, Louvain, Belgium, December 2008.

[14] Changling Liu and Jörg Kaiser. A Survey of Mobile Ad Hoc Network Routing Protocols. Technical
report, University of Magdeburg, 2005.

24

Deliverable 2.4

[15] Yves Mahéo, Nicolas Le Sommer, Pascale Launay, Frédéric Guidec, and Mario Dragone. Be-
yond Opportunistic Networking Protocols: a Disruption-Tolerant Application Suite for Disconnected
MANETs. In 4th Extreme Conference on Communication (ExtremeCom’12), pages 1–6, Zürich,
Switzerland, March 2012. ACM.

[16] Yves Mahéo and Romeo Said. Service Invocation over Content-Based Communication in Discon-
nected Mobile Ad Hoc Networks. In 24th International Conference on Advanced Information Net-

working and Applications (AINA’10), pages 503–510, Perth, Australia, April 2010. IEEE CS.

[17] Ali Makke, Nicolas Le Sommer, and Yves Mahéo. TAO: A Time-Aware Opportunistic Routing Pro-
tocol for Service Invocation in Intermittently Connected Networks. In 8th International Conference

on Wireless and Mobile Communications (ICWMC 2012), pages 118–123, Venice, Italy, June 2012.
Xpert Publishing Services.

[18] Vinìcius F. S. Mota, Felipe D. Cunha, Daniel F. Macedo, José M. S. Nogueira, and Antonio A. F.
Loureiro. Protocols, Mobility Models and Tools in Opportunistic Networks: A Survey. Computer

Communications, March 2014.

[19] Zach Shelby, Klaus Hartke, and Carsten Bormann. Constrained Application Protocol (CoAP). IETF
Internet Draft, June 2014.

[20] Costas Tziouvas, Lambros Lambrinos, and Chrysostomos Chrysostomou. A Delay Tolerant Platform
for Voice Message Delivery. In 1st International Workshop on Opportunistic and Delay/Disruption-

Tolerant Networking, pages 1–5, 2011.

[21] Yongping Xiong, Limin Sun, Wenbo He, and Jian Ma. Anycast Routing in Mobile Opportunistic Net-
works. In IEEE Symposium on Computers and Communications (ISCC’10), pages 599–604, Riccione,
Italy, June 2010. IEEE CS.

25

	Introduction
	Scenarios
	Disruption-tolerant Computing based on a RESTful approach
	Core specification
	Extension specification
	Service management
	Bindings with disruption-tolerant communication platforms

